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Abstract: Information entropy is introduced as a measure of quantum mechanical uncertainty. An uncertainty 
relation based on information entropy is obtained as an alternative to the Heisenberg inequality. In two typical 
examples, the entropic uncertainty relation is shown to be bounded in situations where the Heisenberg inequality 
diverges or grows too large to be useful. 

The Heisenberg uncertainty principle [1, 2] introduces the 
idea that the probability distributions for the one-dimensional 
momentum, px, and position, x, of a quantum mechanical 
particle cannot be arbitrarily localized. This is usually 
expressed as the Heisenberg inequality 

 ( )
1 22� dψ ψ∗ ∆Ω = Ω − Ω  ∫ τ  

 
2xp x∆ ∆ ≥ !  (1) x x=

For one-dimensional momentum ( � xp i= − ∂ ∂! x ) and position 
( � ), the commutator � �[ ,x ]p x i= − !  and the Robertson 
inequality reduces to the Heisenberg inequality. 

If [ ,  where k is a constant, then the right-hand side 
of the Heisenberg inequality is k/2 and a knowledge of ∆A 
gives an estimated lower bound for ∆B using  

� � ]A B k=
Although Heisenberg did not give general definitions for the 
uncertainties ∆px and ∆x, they are usually associated with the 
standard deviation of a set of measurements of the position and 
momentum. 

 
2

kB
A

∆ ≥
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 In this paper we discuss some limitations of the Heisenberg 
inequality that are a consequence of using the standard 
deviation as a measure of uncertainty. We show how a 
definition of uncertainty based on the definition of entropy 
from information theory leads to an alternative uncertainty 
relation. We then use the entropic uncertainty relation to 
discuss two model problems specifically chosen to illustrate 
the shortcomings of the Heisenberg inequality.  

However, if [ ,  where C  is another operator, then 
we must know ψ in order to evaluate the right-hand side of eq 
2. But if we know ψ, ∆B can be calculated directly. If the 
right-hand side of eq 2 were always a constant, the resulting 
inequality would be stronger and thus more useful. 

� � ]A B C= � �

The derivation of the Robertson inequality is based on 
defining uncertainty as a measure of the distribution of values 
about their average value. This definition is consistent with the 
usual method of determining experimental uncertainty. It is 
most appropriate when the distribution of values is near-
Gaussian. If the distribution has more than one peak, the 
standard deviation is not a good measure of uncertainty. As 
discussed by Hilgevoord [4], even if there is only one peak, the 
standard deviation may be a poor estimate of uncertainty if the 
distribution deviates significantly from Gaussian. It is 
reasonable to investigate measures of uncertainty other than 
the standard deviation and see if they lead to other uncertainty 
relations. 

Uncertainty relations 

For a quantum mechanical system described by a normalized 
wavefunction ψ, 〈Ω〉, the average value of the operator Ω  is 
given by  

�

 � dψ ψ τ∗Ω = Ω∫  

where the integration is over the entire coordinate space. The 
standard approach to uncertainty relations is expressed by the 
Robertson inequality [3] 

 ( )( ) 1 � �[ , ]
2

A B A B dψ ψ τ∗∆ ∆ ≥ ∫  (2) 
Intuitively, we equate uncertainty with a lack of 

information. It should come as no surprise that information 
theory provides a way to measure uncertainty. Information 
theory has its primary roots in two classic papers written by 
Claude Shannon in 1948 [5]. Shannon�s purpose was to 
develop a mathematical theory to quantitatively analyze the 
passage of information from a source, through an information 
channel to a receiver. It has subsequently been applied to areas 
ranging from calculation of the ability of a material to be 

where  and �A �B  are Hermitian operators and their commutator 
. ∆Ω is the standard deviation of the 

operator , given by 

� �] = �� � �[ ,A B AB
�Ω

BA−
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penetrated by charged particles [6] to analysis of binding sites 
on nucleotide sequences [7].   ( ) ( )1 exp

2π
ipxp x dxφ

∞

−∞

− =  
 ∫ !!

ψ  (7) 
If we have a message composed of n signals, each of which 

occurs with a probability pi,, Shannon defined the information 
associated with this discrete probability distribution as 

 ( )
1

ln
n

i i
i

H p p
=

= −∑  (3) 

With ψ(x) we can associate a position-space density 
distribution ( ) ( ) ( )x xρ ψ ψ∗=

( )

x  and with φ(p) we can 
associate a momentum-space density distribution 

( ) ( )p p pφ∗ρ φ= . Using eq 4 we calculate the position-
space and momentum-space information entropies as By analogy to Boltzmann�s formulation of entropy in 

statistical mechanics, Shannon called H the entropy of the 
signal distribution. The story is told that John von Neumann 
advised Shannon to use the term entropy because �no one 
knows what entropy really is, so in a debate you will always 
have the advantage� [8]. This probabilistic or information 
entropy measures the spread and sharpness of a probability 
distribution, independent of its actual values. For a continuous 
variable t and an associated probability density distribution 
ρ(t) normalized so that 

  (8) ( ) ( )lnxS xρ ρ
∞

−∞

= − ∫ x dx

p dp

and 

  (9) ( ) ( )lnpS pρ ρ
∞

−∞

= − ∫

  ( ) 1t dtρ
∞

−∞

=∫ Bialynicki-Birula and Mycielski (BBM) [11] used Fourier 
analysis to derive a relationship between Sx and Sp. Their 
derivation is synopsized in the appendix. They showed that Sx 
and Sp satisfy the relation the sum in eq 3 becomes an integral and the information 

entropy of ρ is given by 
  (10) 1 lnπ 2.145x pS S+ ≥ + ≅

  (4) ( ) ( )lntS tρ ρ
∞

−∞

= − ∫ t dt We call this an entropic uncertainty relation. 
Because the information entropy measures the localization 

of a distribution, eq 10 places a limit on the simultaneous 
localization of the position and momentum distributions. If one 
of the entropies becomes small, then the other must become 
large enough to preserve the inequality. This is philosophically 
consistent with the Heisenberg uncertainty principle. BBM 
[11] also showed that the Heisenberg inequality could be 
derived from their entropic uncertainty relation. 

For the reader who desires to learn more about information 
theory, there are numerous resources. Chapter 9 of Goldstein 
and Goldstein [9] discusses the relationship between entropy 
and information at a level understandable by the nonscientist. 
Pierce [10] provides a more technical discussion and discusses 
the applicability to a variety of areas including art and 
psychology. Shannon�s original papers [5] contain some 
difficult areas, but most of his work is straightforward, 
particularly in his development of the concept of entropy. 

The BBM entropic uncertainty relation has a constant lower 
bound and thus overcomes one of the limitations of the 
Heisenberg inequality. These entropic uncertainty relations 
have recently received considerable interest in the literature. 
The interested reader is referred to Majerník and Richterek 
[12], Yáñez et al. [13], Majerník and Majerníková [14] and 
references therein. 

To better understand St, it will be helpful to consider a 
Gaussian distribution with mean t = 0 and standard deviation 
σ, 

 ( )
2

2
1 exp
2π 2

ttρ
σ σ

 −= 
 

  (5) Constant Wavefunction in Position Space 

Performing the integration in eq 4, we obtain 

 ( ) (1 1 ln 2π ln
2tS σ= + +   )  (6) 

We can illustrate one of the shortcomings of the Heisenberg 
inequality by considering a quantum mechanical particle 
described by the normalized, position-space wavefunction 

( ) 1/x Lψ =  on ћ the interval �L/2 ≤ x ≤ L/2 and ψ(x) = 0 
elsewhere. We will use units scaled such that ћ = m =  1. This 
serves both to simplify the form of the equations and to 
emphasize that the entropy is a measure of the sharpness of the 
probability distribution, independent of dimension. Other ways 
of dealing with the issue of dimension are discussed in section 
4 of [12]. The conjugate momentum-space wavefunction can 
be obtained from the Fourier transform, eq 7 as  

As σ increases, ρ(t) becomes less localized and St increases. 
This is consistent with the idea that decreased localization 
should result in increased entropy. In the case of a Gaussian 
distribution, σ and  St are seen to provide similar information. 

For a normalized, one-dimensional, position-space 
wavefunction ψ(x), the conjugate momentum-space 
wavefunction φ(p) is given by the Fourier transform 
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2 sin 22
πx
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L p
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consistent with the idea that the uncertainty in position 
increases as the interval length increases. The momentum-
space information entropy results in the rather complicated 
integral 

and ∆px∆x = ∞. The Heisenberg inequality is certainly 
satisfied, but it is difficult to extract anything useful from the 
product ∆px∆x. 

Infinite Square Well 

We consider a well of length L, centered at the origin, with a 
quantum mechanical particle confined to the interval �L/2 ≤ x 
≤ L/2. We will again use units scaled such that ћ = m = 1. The 
system is symmetric about x = 0 and the solutions to the 
Schrödinger equation divide into symmetric cosine functions 
and asymmetric sine functions. Because the Fourier transform 
of a sine function results in a complex-valued function, we will 
only consider the symmetric states 

Figure 1. Information entropies for L= 2. 

     ( ) ( ) ( )2

2

sin 21 1 2exp
π2π

L

L

Lp
p ipx dx

L pL
φ

−

= − =∫  (11) 

 ( ) ( )2 1 π2 cosn
n x

x
L L

ψ
−

= 
 

 (17) 
The position-space information entropy is given by 

 ( )
2 2 2

2

1 1ln ln
L

x
L

S
L L−

  = − =   
  ∫ dx L  (12) 

where n = 1,2,3,�. The conjugate momentum-space 
wavefunctions are given by 

 ( ) ( ) ( ) ( )
( )

1
22 2

2 1 cos 2
2 1 π

π 2 1
n

n
n Lp

p L
n p

φ + −
= −

− − 2L
 (18) 

Calculation of the entropic uncertainties requires evaluation 
of integrals involving logarithms of trigonometric functions 

     
( )

2

2sin sin 22 22 ln
π πp

Lp
Lp

S d
L p L p

∞

−∞

  
       =   

 
  

∫  (13) p
( ) ( ) ( )

2
2 2

2

2 1 π 2 1 π2 2cos ln cos ln 2 1
L

x
L

n x n x
S L

L L L L−

    − − 
= =     

     
∫ −

  (19) 





Sánchez-Ruiz [15] showed that  

 ( ) ( ) (
2 2

2 2
0

sin sin
ln π 1

x x
dx

x x
γ

∞ 
= − 

 
∫ )  (14) 

independent of the value of n. Sp can be evaluated using 
numerical integration. Figure 1 shows the information 
entropies and their sums for L = 2 and increasing n.  Sp appears 
to be approaching an asymptotic limit which is slightly greater 
than 2.6. Majerník et al. [16] have shown that the limiting 
value is ≈2.6564. We see that Sx + Sp ranges from 2.2120 to 
3.0175 so the BBM inequality is satisfied. where γ is Euler�s constant γ = 0.5772. Thus Sp = ln(2π/L) + 

2(1 � γ). Sp = 2.683 at L = 1 and decreases to 0.381 at L = 10 
while Sx + Sp = ln(2π) + 2(1 � γ) = 2.683 ≥ 1 + ln π. 

Because the position- and momentum-space wavefunctions 
are again symmetric about the origins of their respective 
spaces, 0xp x= = . The standard deviations are readily 
evaluated [17] as 

Because the position- and momentum-space wavefunctions 
are symmetric about the origins of their respective spaces, 〈px〉 
= 〈x〉 = 0. Calculation of the position-space standard deviation 
gives 

 
2

2

2

1 3
6

L

L

x x dx L
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∆ = =∫  (15) 
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( )
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2 1 π 2 1 π2 2cos cos
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L
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x x d
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L
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−

x
    − − 

∆ =      
     

= −
−

∫
 (20) 

When we calculate the momentum-space standard deviation, 
we find and 
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 ( )221 π 2 1 6
2 3xp x n∆ ∆ = − −  (22) 
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independent of L. Figure 2 shows the standard deviations and 
their product.  

Although Sp and ∆p are both measures of momentum 
uncertainty, as n increases they behave in strikingly different 
ways. For n > 1 the momentum density distribution, ρn(p), has 
two distinct peaks, symmetrically located above and below the 
mean. ρ2(p) is shown in Figure 3. Superimposed on the graph 
is a Gaussian distribution having the same standard deviation 
as ρ2(p). Given the difference between the momentum density 
distribution and the Gaussian �fit� to it by the standard 
deviation, it is not surprising that the standard deviation is not 
a good measure of the momentum uncertainty. As n increases, 
the separation between the peaks increases. Figure 4 shows 
that the increase in standard deviation is linear with increasing 
n. The uncertainty measured by the standard deviation is 
primarily a measure of the separation between the peaks of the 
momentum density distribution. 

Figure 2. Standard deviations for L = 2. 
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The momentum-space information entropy measures the 
area under the density distribution and primarily depends on 
the area under the two main peaks. Thus, it is bounded and 
well-behaved. Because Sx = ln(2L) � 1, we have a quantitative 
relation between the position-space and momentum-space 
uncertainties, independent of the value of n. 

Summary 

We have presented a formulation of uncertainty based on 
information entropy and shown how entropic uncertainty 
relations are bounded in situations where the Heisenberg 
inequality is not bounded. If we consider ∆px∆x and Sx + Sp to 
measure orbits in their respective phase spaces, the former are 
sometimes not bounded whereas the latter are bounded. 
Further, the entropic uncertainty relations always have a finite 
lower bound.  

Figure 3. ρ2(p), the momentum-space distribution for  n = 2, L = 2, 
and a Gaussian distribution having the same standard deviation. 
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The only case of which the author is aware where the 
Heisenberg inequality is bounded and the entropic uncertainty 
relation is unbounded is a distribution composed of separated 
Dirac delta functions. Everett [18] pointed out that such a 
distribution satisfies the Heisenberg inequality but results in 
infinite information entropy. For typical quantum chemical 
distributions, such as atomic wavefunctions, the position-space 
and momentum-space wavefunctions are well behaved and the 
entropic uncertainty relations lead to finite bounds [19]. 

Figure 4. Momentum standard deviation dependence on n. 
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(21) 

This material should be useful in a classroom discussion of 
uncertainty and uncertainty principles. It also provides 
examples that give a student the opportunity for quantitative 
calculations involving one of quantum theory�s fundamental 
concepts. 
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As n increases, ∆x asymptotically approaches ( )3 6 L . The 

increase in ∆px is linear with n and the product of the standard 
deviations is 

Appendix 

Consider a one-dimensional function f(x) and its Fourier 
transform g(k) where f(x) and g(k) are normalized so that 
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  (A1) ( ) ( ) 1f x dx g k dk
∞ ∞

−∞ −∞

=∫ ∫ =

+

In 1957, Everett [18] and Hirshman [20] independently 
conjectured, but did not prove, that 

( ) ( ) ( ) ( ) ( )ln ln 1 ln πf x f x dx g k f k dk
∞ ∞

−∞ −∞

− − ≥      ∫ ∫  (A2) 

Their conjecture was based on the observation that if f(x) 
and g(k) are Gaussian functions, the inequality reduces to an 
equality whereas any variation from a Gaussian function 
increases the left side of the inequality. Analogous behavior 
for Gaussian functions is also noted for the Heisenberg 
inequality. 

Almost 20 years later BBM [11] proved eq A2 using Fourier 
analysis. Their proof is synopsized below. Define 

( ) ( )
1

and 
pp q

p qf f x dx g g x dx
∞ ∞

−∞ −∞

  
= =  
    
∫ ∫

1
q



 (A3) 

The (p,q) norm of this Fourier transform pair is defined as the 
smallest number k(p,q) for which the inequality 

 ( , )q pg k p q f=  (A4) 

holds, where 

 1 1 1 and 2q
p q

+ = ≥  (A5) 

Beckner [21] showed that 

 ( )
1 1

22 π 2 π,
q

k p q
q p

−
  =   

  

2 p
 (A6) 

Writing the difference from eq A4 as 

 ( ) ( , ) pW q k p q f g= q−  (A7) 

and expressing p as a function of q, BBM showed that the 
derivative of W(q) evaluated at q = 2 reduces to the inequality 
of eq A2. 
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